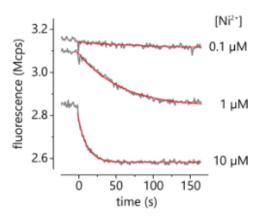


Application Note

Real-time measurement of Ni²⁺-ion chelation kinetics

Key words: NTA, His-tagged proteins, Chelation, Ions


Background

Nitrilotriacetic acid (NTA) is a common chelating agent, which forms coordination compounds with metal ions (chelates) such as Ni²⁺, Cu²⁺ and Co²⁺. It is primarily used for the purification and immobilization of His-tagged proteins, which are captured by NTA-Ni²⁺ chelates bound to solid supports. The loading of NTA with Ni²⁺-ions is an essential step for the activity of the chelate. Thus, we determined the association rate of Ni²⁺ to NTA and investigated the stability of the chelate against a competitive chelator, EDTA. Such information is required for research applications involving His-tag capture and industrial protein purification methodologies.

Methods and Results

Using a standard switchSENSE chip with 48 bp DNA, the binding of Ni²⁺ to NTA was measured by Fluorescence Proximity Sensing. Complementary trisNTA-modified DNA from the Dynamic Biosensors NTA kit was used to functionalize the surface with NTA groups.

When chelated by the NTA groups, the bound Ni²⁺-ions quench the dye fluorescence by approximately -15% due to the Fluorescence Proximity effect. Binding kinetics follow a single-

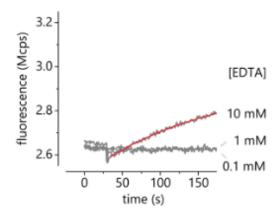


Figure 1 I Real-time measurement of binding of Ni²⁺-ions to NTA measured by Fluorescence Proximity Sensing. Red lines are single exponential fits with an association rate of $k_{ON} = 1.2 \pm 0.1 \times 10^4 \, M^{-1} s^{-1}$.

exponential behavior (Fig. 1) with an association rate of $k_{ON} = 1.2 \pm 0.1 \times 10^4 \text{ M}^{-1}\text{s}^{-1}$.

 Ni^{2+} -ions are stably bound to NTA for many hours. To remove Ni^{2+} from NTA, high concentrations of a competitive chelator like EDTA are necessary. Only when using EDTA concentrations higher than 1 mM the dissociation of Ni^{2+} could be observed (Fig. 2) and even at an EDTA concentration of 10 mM the dissociation rate was relatively low: $k_{OFF} = 6.2 \pm 0.4 \times 10^{-3} \text{ s}^{-1}$.

dynamicBIOSENSORS

Figure 2 I Real-time measurement of the dissociation of Ni²⁺-ions from NTA via competition with EDTA. The red line is a single exponential fit. The dissociation rate at 10 mM EDTA is $k_{OFF} = 6.2 \pm 0.4 \times 10^{-3} \text{ s}^{-1}$.

Conclusions

The binding kinetics of Ni²⁺-ions to NTA could be measured using the Fluorescence Proximity Sensing measurement mode. For complete saturation of an NTA-surface within 1 minute, a concentration of at least 10 μ M Ni²⁺ is required. A low background concentration of e.g. 100 μ M EDTA does not affect the chelated ions. To wash Ni²⁺ from NTA, EDTA concentrations of at least 10 mM must be used.

Author I Andreas Langer

Contact I <u>info@dynamic-biosensors.com</u>

Dynamic Biosensors GmbH I January 2016